Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement agent for imaging lymph nodes: a phase 2 dose study.

نویسندگان

  • Patricia A Hudgins
  • Yoshimi Anzai
  • Marie R Morris
  • Maria A Lucas
چکیده

BACKGROUND AND PURPOSE Dextran-coated ultrasmall superparamagnetic iron oxide ferumoxtran-10 (Combidex) is used in reticuloendothelial MR imaging. Our purpose was to determine the optimal dose and imaging time for lymph node evaluation. MATERIALS Twenty-four healthy volunteers underwent neck MR imaging before and 6, 12, 24, and 36 hours after receiving 1.1, 1.7, 2.6, or 3.4 mg Fe/kg ferumoxtran-10. Vital signs, serum and urine levels, and adverse events were monitored. Qualitative nodal architecture, size, and signal-intensity changes were assessed on T1-, T2-, and T2*-weighted (fast field-echo 25 degrees or 80 degrees flip angle [FFE-25 or FFE-80]) images. Region-of-interest intensities were measured quantitatively. RESULTS Consistently strong enhancement in normal nodes was found with 24- and 36-hour T2- and T2*-weighted imaging after 2.6 and 3.4 mg Fe/kg doses. No serious adverse events occurred. With 2.6 mg Fe/kg, unblinded (vs blinded) specificities at 24 and 36 hours, respectively, were 100% and 100% (vs 88% and 88%) with T2-weighted, 96% and 96% (vs 73% and 85%) with FFE-25, and 100% and 92% (vs 85% and 88%) with FFE-80 sequences. With 3.4 mg Fe/kg, unblinded (vs blinded) specificities at 24 and 36 hours, respectively, were 89% and 79% (vs 75% and 75%) with T2-weighted, 84% and 79% (vs 95% and 100%) with FFE-25, and 95% and 79% (vs 95% and 80%) with FFE-80 sequences. CONCLUSION Ferumoxtran-10 nodal imaging appears to be effective and safe. Signal intensity and specificity for normal nodes were best 24 or 36 hours after 2.6 and 3.4 mg Fe/kg doses. Nodal conspicuity was best with T2- and T2*-weighted sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emerging applications for ferumoxytol as a contrast agent in MRI.

Ferumoxytol is an ultrasmall superparamagnetic iron oxide (USPIO) agent initially approved by the Food and Drug Administration (FDA) as an iron replacement therapy for patients with anemia due to chronic renal failure. Recently, ferumoxytol has been investigated extensively as an intravenous contrast agent in magnetic resonance imaging (MRI). Since it causes regional T1 and T2 * shortening in v...

متن کامل

Dextran-coated superparamagnetic iron oxide, an MR contrast agent for assessing lymph nodes in the head and neck.

PURPOSE To investigate dextran-coated superparamagnetic iron oxide particles (BMS 180549) as an MR contrast agent for assessing lymph nodes. METHODS Five different doses ranging from 0.3 to 1.7 mg Fe/kg were evaluated in five healthy human male subjects as part of a phase 1 clinical study. T1-, T2-, and proton density-weighted spin-echo images as well as multiplanar gradient-echo and spoiled ...

متن کامل

Magnetic resonance lymphography in gynaecological malignancies

Following the submission of this article to Cancer Imaging, unfortunately the European manufacturer of ferumoxtran-10 (Guerbet) has withdrawn the product pending further phase III studies. This is secondary to the view of the Committee for Medicinal Products for Human Use that the phase III data did not provide adequate statistical demonstration of the product's efficacy. Magnetic resonance lym...

متن کامل

A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...

متن کامل

Potential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times

Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2002